Drosophila CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system
نویسندگان
چکیده
Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end-tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain-containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin-dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.
منابع مشابه
Distinct mechanisms govern the localisation of Drosophila CLIP-190 to unattached kinetochores and microtubule plus-ends.
CLIP-170 was the first microtubule plus-end-tracking protein to be described, and is implicated in the regulation of microtubule plus-ends and their interaction with other cellular structures. Here, we have studied the cell-cycle-dependent mechanisms which localise the sole Drosophila melanogaster homologue CLIP-190. During mitosis, CLIP-190 localises to unattached kinetochores independently of...
متن کاملDynamic Localization of CLIP-170 to Microtubule Plus Ends Is Coupled to Microtubule Assembly
CLIP-170 is a cytoplasmic linker protein that localizes to plus ends of microtubules in vivo. In this study, we have characterized the microtubule-binding properties of CLIP-170, to understand the mechanism of its plus end targeting. We show that the NH2-terminal microtubule-interacting domain of CLIP-170 alone localizes to microtubule plus ends when transfected into cells. Association of CLIP-...
متن کاملMicrotubule plus-end loading of p150(Glued) is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells.
Microtubule dynamics and function are regulated, at least in part, by a family of proteins that localize to microtubule plus-ends, and include EB1, CLIP-170 and the dynactin component p150(Glued). Plus-end pools of these proteins, notably dynactin, have been invoked in a number of ;search-and-capture' mechanisms, including the attachment of microtubules to kinetochores during mitosis and to end...
متن کاملInteractions between CLIP-170, tubulin, and microtubules: implications for the mechanism of Clip-170 plus-end tracking behavior.
CLIP-170 belongs to a group of proteins (+TIPs) with the enigmatic ability to dynamically track growing microtubule plus-ends. CLIP-170 regulates microtubule dynamics in vivo and has been implicated in cargo-microtubule interactions in vivo and in vitro. Though plus-end tracking likely has intimate connections to +TIP function, little is known about the mechanism(s) by which this dynamic locali...
متن کاملA Class VI Unconventional Myosin Is Associated with a Homologue of a Microtubule-binding Protein, Cytoplasmic Linker Protein–170, in Neurons and at the Posterior Pole of Drosophila Embryos
Coordination of cellular organization requires the interaction of the cytoskeletal filament systems. Recently, several lines of investigation have suggested that transport of cellular components along both microtubules and actin filaments is important for cellular organization and function. We report here on molecules that may mediate coordination between the actin and microtubule cytoskeletons...
متن کامل